Parallel Training of Neural Networks for Speech Recognition
نویسندگان
چکیده
The feed-forward multi-layer neural networks have significant importance in speech recognition. A new parallel-training tool TNet was designed and optimized for multiprocessor computers. The training acceleration rates are reported on a phoneme-state classification task.
منابع مشابه
Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملExponential Moving Average Model in Parallel Speech Recognition Training
As training data rapid growth, large-scale parallel training with multi-GPUs cluster is widely applied in the neural network model learning currently. We present a new approach that applies exponential moving average method in large-scale parallel training of neural network model. It is a non-interference strategy that the exponential moving average model is not broadcasted to distributed worke...
متن کاملParallel Neural Networks for Speech Recognition
This paper presents the PNNC (Parallel Neural Networks by Conndence) and PNNS (Parallel Neural Networks by Success/Failure), which generate and integrate parallel neural networks to achieve high performance on the test problem of letter recognition from string of phonemes. Our approach provides a way to create subproblems for a complex problem by partitioning the data, thus each neural network ...
متن کامل